‘ ANOOS8

KTOI‘] IX® Getting Started with the KXP84

Introduction
This application note will help users quickly implement proof-of-concept designs using the
KXP84 tri-axis accelerometer. Please refer to the KXP84 Data Sheet for additional
implementation guidelines.

Circuit Schematics
This section shows recommended wiring schematics for the KXP84 when operating in both IC
and SPI modes. It also describes an alternate method for resetting the KXP84 registers to
0x00 upon power up. Please refer to the KXP84 Data Sheet for all pin descriptions.

Note: these schematics are recommendations based on proven KXP84 operation. Your
specific application may require modifications from these recommendations.

I2C Schematic

10 %dd
3
S5 1 O 14
ey ey
= 10 vdd = 22
Logic Output = | por soLl 2 - JUL,
: i KXP84 41
Logic Output FF PC S0
5 1y ADDROMD
E g a
jppm— ¥ ﬁ
[
l J_ Tz resETE " Logic Input
TTT
Figure 1. Schematic for I°C Operation
36 Thornwood Dr. — Ithaca, NY 14850 © 2005 Kionix, Inc.
tel: 607-257-1080 - fax: 607-257-1146 22 February 2006

www.kionix.com - info@kionix.com Page 1 of 9

ANOOS8

SPI Schematic

10 wdd
o 1 14
2 10 vdd| 1
. 3 12 T
Logic Output MaT SCLHK
_ 2 KXPg84 . o
Logic Output FF SPI s00 Logic Output
. 5 1y so |10 Logic Input
E E —= |3
E o= Y Cs Logic Input
7 g
__ 7 RESET]| Logic Imput
TTT

Figure 2. Schematic for SPI Operation
RC Reset (Optional)

A good design practice is to control the I*C RESET pin with a microprocessor, but it is
also possible to reset the KXP84 using the RC circuit shown in Figure 3. This circuit
momentarily pulls the RESET pin high at power on, and immediately returns it low
during operation. Note that the RC values are just recommendations, therefore the
final schematic may differ based on application needs.

10 %dd

1uF
RESET

10K

Figure 3. Schematic for RC Reset
Filter Cap Recommendations

To be effective in many applications, such as HDD protection, the KXP84 needs to
respond to changes in acceleration as quickly as possible. The accelerometer’s
bandwidth, and in turn its response time, is largely determined by the external filter
capacitance. Therefore, the filter capacitance should be as small as the application
will allow. Table 1 shows several commonly used bandwidths and the associated
capacitor values for C1, C2, and C3 in the circuits shown above. For most
applications, 500Hz (0.01uF) should be a good starting point.

Bandwidth |Capacitance
(Hz) (uF)
250 0.02
500 0.01

[(| © Kionix 2005
- s s 22 February 2006
Kionix Page 2 of 9

ANOOS8

e
1000 0.005
1500 0.003

Table 1. Bandwidth (Hz) and Capacitance (uF)

Quick Start Implementation

The KXP84 offers the user a powerful range of operating options and features, mostly
controlled by setting appropriate values in registers. This section is not a comprehensive
guide to all of the options and features. Rather it is intended to guide the user to an
implementation of the KXP84 that will get the device up and running as quickly as possible.
Once up and running, the user should experiment with different setting and options to reach
the optimum performance for their specific application.

The registers shown in Table 2 need to be set to get the KXP84 up and running:

Register Address Recommended Value
Name Hex Binary Hex Binary
CTRL_REGB 0x0B 0000 1011 0x06 0000 0110
CTRL_REGC 0Ox0A 0000 1010 0x00 0000 0000
FF_INT 0x06 0000 0110 0Ox14 0001 0100
FF_DELAY 0x07 0000 0111 0x14 0001 0100
MOT_INT 0x08 0000 1000 | 0Ox4D 0100 1101
MOT_DELAY 0x09 0000 1001 0Ox14 0001 0100

Table 2. KXP84 Registers
For each register a set of initial recommended values is provided that will ensure the KXP84
comes up in a known operational state. Note that these conditions just provide a starting
point, and the values should vary as users refine their application requirements.

Register Recommendations

CTRL_REGB
CLKhId | nNENABLE ST X X MOTIen | FFlen | FFMOTI
0 0 0 0 0 1 1 0

Figure 4. Operational Starting Point for CTRL_REGB

CLKhId = 0: The KXP84 will not hold the I°C clock during A/D conversions.
NnENABLE = 0: The KXP84 is enabled/operational.

ST = 0: The KXP84 self-test function is not enabled/operational.

MOTIen = 1: High-g motion detection interrupt is enabled/operational.

FFIen = 1: Free-fall detection interrupt is enabled/operational.

FFMOTI = 0: High-g motion interrupt flag can be detected on pin 3, and the free-fall
interrupt flag can be detected on pin 4.

CTRL_REGC

FFLatch [MOTLatch IntSpd1l | IntSpdO
0 0 0 0

[(| © Kionix 2005
- s s 22 February 2006
Kionix Page 3 of 9

X
0

o | X
o | X

o | X

ANOOS8

Figure 5. Operational Starting Point for CTRL_REGC

IntSpd1l and IntSpdO = 0: The interrupt sampling frequency is 250 samples/second.
Therefore, the interrupt delay times can be calculated using Equation 1.

Free-fall Delay (sec) = FF_Delay (# of samples) / 250 (samples/sec)
High-g Motion Delay (sec) = MOT_Delay (# of samples) / 250 (samples/sec)

Equation 1. Free-fall and Motion Delay Calculations

MOTLatch = 0: The motion interrupt output will go high whenever the criterion for
motion detection is met. The output will return low when the criterion is not met.

FFLatch = 0: The free-fall interrupt output will go high whenever the criterion for
free-fall detection is met. The output will return low when the criterion is not met.

Thresholds and Delays

The following are some suggested acceleration thresholds and delay (or dwell) times
appropriate to many drop detection applications. For each suggested parameter the
appropriate register value is provided in binary and hexadecimal.

Free fall
Detection Threshold = 0.4g
FF_INT = (0001 0100 or 0x14)

Delay Time = 80mS
FF_DELAY = (0001 0100 or 0x14)

High-g Motion
Detection Threshold = 1.5¢g
MOT_INT = (0100 1101 or 0x4D)

Delay Time = 80mS
MOT_DELAY = (0001 0100 or 0x14)

Expected Results

When the registers are loaded with the recommended values, the KXP84 becomes armed for
HDD protection. This means that the freefall and motion interrupts will be triggered if the
accelerometer experiences an event that exceeds any of the above described thresholds and
delays. In this case, FF_INT will go to “1” if all accelerometer axis (X, Y, and Z)
simultaneously drop below 0.4g for 80mS or more and MOT_INT will go to “1” if any
accelerometer axis (X, Y, or Z) go rise above 1.5g for 80mS or more. Figures 6 and 7 show
how the KXP84 interrupts will react to a typical event.

By monitoring the interrupt pins 3 and 4, or repeatedly reading the status register,
CTRL_REGA (0x0C), the user will be notified of a harmful event and must park/unload the
HDD head for protection. Note that the interrupts are selected to be unlatched, so they will
return low after the event has concluded. For additional information, please refer to the
KXP84 Data Sheet.

(| © Kionix 2005
I . 22 Feb 2006
Kionix eoruaty

Page 4 of 9

Typical Motion Interrupt Example (Unlatched)

ANOOS8

255

?

¢

Pos. Motion limit 205

Pos. Freefall limit 148

Og 128
Neg. Freefall limit 108

Neg. Motion limit 51
0

[ESOR RG S Sp (g E U S (U Gpp R ——

Motion debounce timer 5y b-------—4----p-——-
Set to 20 counts. M
}
N =2 counts 1 E
)
}

Motion Interrupt

B it L e B B o Rt Rkt ettt

Figure 6. Typical Motion Interrupt Example (MOTLatch = 0)

€
Kionix”

© Kionix 2005
22 February 2006
Page 5 of 9

ANOOS8

Typical Freefall Interrupt Example (Unlatched)

255
N\

Pos. Motion limit 205 L/ ~

Pos. Freefall limit 148

1%

Og 128
Neg. Freefall limit 108

L

Neg. Motion limit st
0

Freefall debounce timer 5 L----oooomememom L

PO (IS SN I
S U

Set to 20 counts. rHILrHIr,-"I?
[}

N =2 counts i

I

[}

Freefall Interrupt

Figure 7. Typical Free-fall Interrupt Example (FFLatch = 0)
Software Implementation

The following source code is the software program used with the Kionix HDD Protection Kit.
It was written in Python, an uncompiled language, for I?*C communication between a KXP84
Evaluation Board, Aardvark I12C/SPI Host Device, and a PC. Note that this device is polling
the KXP84 status register, CTRL_REGA, every 2mS in order to determine if a HDD head
park/unload is required.

#!/bin/env python

IMPORTS

4 o 3 3 4

import sys
import time

from aardvark_py import *

#

CONSTANTS

#

port =0
bitrate = 100

Device
DEVICE = 0x18

(| © Kionix 2005
I . 22 Feb 2006
Kionix eoruary

Page 6 of 9

ANOOS8

Addresses
XOUT_H = 0x00
XOUT_L = 0x01
YOUT_H = 0x02
YOUT_L 0x03
ZOUT_H 0x04
ZOUT_L = 0x05
FF_INT = 0x06
FF_DELAY = 0x07
MOT_INT = 0x08
MOT_DELAY = 0x09
CTRL_REGC = 0x0A
CTRL_REGB 0x0B
CTRL_REGA 0x0C

CTRL_REGA
Parity = 0x04
MOTI = 0x02
FFI = 0x01

CTRL_REGB
CLKhld = 0x80
nEnable = 0x40
ST = 0x20
MOTDen = 0x10
FFDen = 0x08
MOTIen = 0x04
FFIen = 0x02
FFMOTI = 0x01

#
MAIN PROGRAM
#

Open the device

handle = aa_open (port)

if (handle <= 0):
print "Unable to open Aardvark device on port %d" % port
print "Error code = %d" % handle
sys.exit ()

User Configuration

Sensitivity = (5.0/(2**12)) # g/count
SampleRate = 250.0 # Hz

sys.stdout.write ("Freefall Threshold (g): ")

FF_Threshold = float(sys.stdin.readline())

FF_Threshold = round(FF_Threshold / (16 * Sensitivity))

print "FF_INT byte: 0x%x" % FF_Threshold

print "Freefall Threshold set to %0.3fg" % (16 * FF_Threshold * Sensitivity)

sys.stdout.write ("Freefall Interrupt Delay (ms): ")
FF_Delay = float (sys.stdin.readline()) /1000
FF_Delay = int (round(FF_Delay * SampleRate))
if FF_Delay < 0x01:

FF_Delay = 0x01

(| © Kionix 2005
I . 22 Feb 2006
Kionix epruaty

Page 7 of 9

ANOOS8

-
if FF_Delay > OxFF:
FF_Delay = OxFF
print "FF_DELAY byte: 0x%x" % FF_Delay
print "Freefall Interrupt Delay set to %dms" % ((FF_Delay / SampleRate) * 1000)
sys.stdout.write ("Motion Threshold (g): ")
MOT_Threshold = float (sys.stdin.readline())
MOT_Threshold = round (MOT_Threshold / (16 * Sensitivity))
print "MOT_INT byte: 0x%x" % MOT_Threshold
print "Motion Threshold set to %0.3fg" % (16 * MOT_Threshold * Sensitivity)

sys.stdout.write ("Motion Interrupt Delay (ms): ")
MOT_Delay = float (sys.stdin.readline()) /1000
MOT_Delay = int (round (MOT_Delay * SampleRate))
if MOT_Delay < 0x01:
MOT_Delay = 0x01
if MOT_Delay > O0xFF:
MOT_Delay = OxFF
print "MOT_DELAY byte: 0x%x" % MOT_Delay
print "Motion Interrupt Delay set to %dms" % ((MOT_Delay / SampleRate) * 1000)

Ensure that the I2C subsystem is enabled
aa_configure (handle, AA_CONFIG_SPI_TI2C)

Power the EEPROM using the Aardvark adapter's power supply.

This command is only effective on v2.0 hardware or greater.

The power pins on the v1.02 hardware are not enabled by default.
aa_target_power (handle, AA_TARGET_POWER_BOTH)

Activate the pull-up resistor(s)
aa_i2c_pullup (handle,AA_TI2C_PULLUP_BOTH) ;

Setup the clock phase
#aa_spi_configure (handle, mode >> 1, mode & 1, AA_SPI_BITORDER_MSR)

Set the bitrate
bitrate = aa_i2c_bitrate (handle, bitrate)
print "Bitrate set to %d kHz" % bitrate

Configure the device

aa_i2c_write (handle,DEVICE, 0, array
aa_i2c_write (handle,DEVICE, 0, array
aa_i2c_write (handle,DEVICE, 0, array

14

('B [CTRL_REGC, 01]))

(('B [CTRL_REGB, 01]))

(('B', [CTRL_REGB, FFIen | MOTIen]))
aa_i2c_write (handle,DEVICE, O, array('B', [FF_DELAY, FF_Delay]))
aa_i2c_write (handle,DEVICE, O, array('B', [MOT_DELAY, MOT_Delav]))

(('B', [

(('B', [

14
]

14
aa_i2c_write (handle,DEVICE, 0, array ', [FF_INT, int (FF_Threshold)]))
aa_i2c_write (handle,DEVICE, 0, array MOT_INT, int (MOT_Threshold)]))

14

A\l
14

print "Ready..."

while (1):
aa_i2c_write (handle,DEVICE, O,array('B', [CTRL_REGA]))
(ret, data, count) = aa_i2c_read_ext (handle,DEVICE, 0, 1)

if len(data) < 1:
sys.stdout.write ("SENSOR READ ERROR. Park drive head.\n(Press Enter to resume
sampling or Q followed by Enter to quit.) ")
userinput = sys.stdin.readline ()
if (userinput == "g\n" or userinput == "Q\n"):
aa_close (handle)
sys.exit ()
elif data[0] & FFI:

(| © Kionix 2005
I . 22 Feb 2006
Kionix eoruary

Page 8 of 9

ANOOS8

sys.stdout.write ("Freefall started. Park drive head.\n(Press Enter to resume
sampling or Q followed by Enter to quit.) ")

userinput = sys.stdin.readline ()

if (userinput == "g\n" or userinput == "Q\n"):
aa_close (handle)
sys.exit ()

aa_i2c_write (handle,DEVICE, 0,array('B', [CTRL_REGB, 0]))
aa_i2c_write (handle,DEVICE, O,array('B', [CTRL_REGB, FFIen | MOTIen]))
elif data[0] & MOTI:

sys.stdout.write ("High—-g motion detected. Park drive head.\n(Press Enter to
resume sampling or Q followed by Enter to quit.) ")

userinput = sys.stdin.readline ()

if (userinput == "g\n" or userinput == "Q\n"):
aa_close (handle)
sys.exit ()

(
aa_i2c_write (handle,DEVICE, O,array('B', [CTRL_REGB, 0]))
aa_i2c_write (handle,DEVICE, 0, array('B', [CTRL_REGB, FFIen | MOTIen]))

aa_close (handle)

(| © Kionix 2005
I . 22 Feb 2006
Kionix coruary

Page 9 of 9

