LOW DROP OUT VOLTAGE REGULATOR

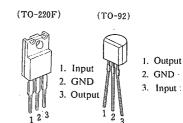
参考資料

■ GENERAL DESCRIPTION

The NJM2930 3-terminal positive voltage regulator features an ability to source 150mA of output current (100mA: L-Type) with an input-output differential of 0.6V or less. Efficient use of low input voltages obtained, for example, from an automotive battery during cold crank conditions, allows 5V circuitry to be properly powered with supply voltages as low as 5.6V.

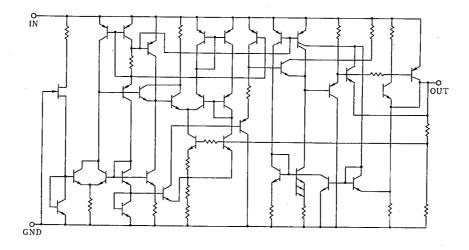
Familiar regulator features such as current limit and thermal overload protection are also provided.

■ FEATURES


- Operating Voltage
- Imput-Output differential less 0.6V
- Output Current in Excess of 150mA
- 40V Load Dump Protection
- Internal Short Circuit Current Limit
- Internal Thermal Overload Protection
- Package Outline

TO-220F, TO-92

Bipolar Technology


■ PACKAGE OUTLINE

NJM2930F

NJM2930L

■ EQUIVALENT CIRCUIT

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Operating Input Voltage Range	V _{IN}	26	V
Input Overvoltage Protection	V _{PR}	40	ν
Input Reverse Voltage	V _{INRI} (100ms)	-12	V
Input Reverse Voltage	V _{INR2} (DC)	6	٧
Maximum Output Current	Іом	(TO-92) 100 (TO-220F) 150	mA mA
Power Dissipation	PD	(TO-92) 500 (TO-220F) 7.5(Note)	mW W
Operating Temperature Range	Topr	-30~75	$^{\circ}$
Storage Temperature Range	Tstg	-40~125	°C

(note) Case Temperature : $T_{case} \le 75$ °C, Thermal Resistance: $\theta_{jc} = 5$ °C/W TYP.

■ ELECTRICAL CHARACTERISTICS

(All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques.)

NJM2930F05 ($V_{IN}=14V$, $C_2=10\mu F$, $T_j=25^{\circ}C$)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vo	6V≦V _{IN} ≦26V, 5mA≦I _O ≦100mA	4.5	5	5.5	v
Line Regulation	ΔVo-Vi	9V≦V _{IN} ≤16V, I _O =5mA	-	7	25	mV
•	$\Delta V_{O} - V_{I}$	6V≦V _{IN} ≦26V, I _O =5mA	—	30	80	mV
Load Regulation	ΔVo-lo	5mA≤I ₀ ≤150mA		14	50	mV
Quiescent Current	I _{Q1}	$I_O = 10 \text{mA}$		4	7	mA
	I_{O2}	I _O = 150mA	-	30	40	mA
Dropout Voltage	ΔV ₁ -0	I _O =150mA	-	0.3	0.6	V
Output Noise Voltage	V _{NO}	10Hz~100kHz, I _O =150mA	-	100	—	μV
Ripple Rejection	RR	$f = 120 \text{Hz}, I_0 = 150 \text{mA}$	-	60	<u> </u>	dB

NJM2930L 05 ($V_{1N}=14V$, $C_2=10\mu F$, $T_j=25^{\circ}C$)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	דומט
Output Voltage	Vo	6V≦V _{IN} ≤26V, 5mA≤I _O ≤100mA	4.5	5	5.5	v
Line Regulation	$\Delta V_{O} - V_{1}$	9V≦V _{IN} ≦16V, I _O =5mA	_	7	25	mV
	ΔV _O -V _I	6V≦V _{IN} ≦26V, I _O =5mA	—	30	80	mV
Load Regulation	ΔV _O -l _O	5mA≦l _O ≤100mA	l —	14	50	mV
Quiescent Current	IQI	$I_O = 10 \text{mA}$	-	4	7	mΑ
	I_{O2}	I _O =100mA	<u> </u>	25	40	mΑ
Dropout Voltage	ΔV1-0	I _O = 100mA	-	0.25	0.6	V
Output Noise Voltage	V _{NO}	10Hz~100kHz, I _O =40mA, V _{IN} =10V	_	100	_	μV
Ripple Rejection	RR	f=120Hz, I _O =40mA, V _{IN}	_	60		dB

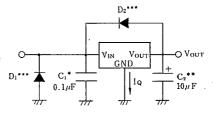
NJM2930F08 ($V_{IN}=14V$, $C_2=10\mu$ F, $T_j=25^{\circ}$ C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vo	9.4V≦V _{IN} ≤26V, 5mA≤I _O ≤150mA	7.2	8	8.8	v
Line Regulation	$\Delta V_{O} - V_{I}$	$9.4V \le V_{1N} \le 16V$, $I_0 = 5mA$	_	12	50	mV
	ΔV _O -V _I	$9.4V \le V_{1N} \le 26V$, $I_0 = 5mA$	-	50	100	mV
Load Regulation	ΔV _O -I _O	5mA≤I _O ≤150mA	_	25	50	mV
Quiescent Current	lot	$I_O = 10 \text{mA}$		4.	7	mA
	I_{Q2}	I _O =150mA	_	30	40	mA
Dropout Voltage	Δ٧1-0	$I_0 = 150 \text{mA}$	<u> </u>	0.3	0.6	V
Output Noise Voltage	V_{NO}	10Hz~100kHz, I _O =150mA	—	140	—	μV
Ripple Rejection	RR	$f = 120$ Hz, $I_0 = 150$ mA	—	57	—	dB

NJM2930L 08 ($V_{1N}=14V$, $C_2=10\mu F$, $T_j=25^{\circ}C$)

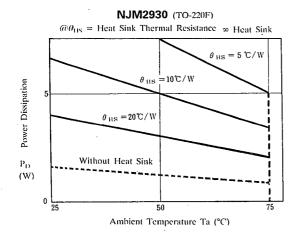
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vo	9.4V≦V _{IN} ≤26V, 5mA≤I _O ≤100mA	7.2	8	8.8	v
Line Regulation	$\Delta V_{O}-V_{1}$	$9.4V \le V_{IN} \le 16V$, $I_O = 5mA$	-	12	50	mV
	ΔV _O -V _I	$9.4V \le V_{IN} \le 26V$, $I_0 = 5mA$	—	50	100	mV
Load Regulation	ΔVo-lo	5mA≦l _O ≤100mA	—	25	50	mV
Quiescent Current	lgi	$l_O = 10 \text{mA}$	-	4	7	mA
•	I _{O2}	$I_0 = 100 \text{mA}$	_	25	40	mA
Dropout Voltage	ΔV1-0	$I_O = 100 \text{mA}$		0.25	0.6	ν
Output Noise Voltage	V _{NO}	10Hz~100kHz, Io=40mA'	—	140	-	μV
Ripple Rejection	RR	f=120Hz, Io=40mA		57		dB

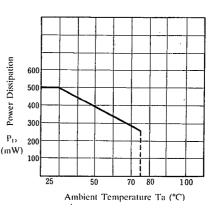
NJM2930F85 ($V_{IN}=14V$, $C_2=10\mu F$, $T_1=25^{\circ}C$)


PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vo	$9.95V \le V_{IN} \le 26V$, $5mA \le I_O \le 150mA$	7.65	8.5	9.35	v
Line Regulation	$\Delta V_0 - V_1$	9.95V≦V _{IN} ≤16V,I _O 5mA	l —	12	50	mV
	$\Delta V_{O}-V_{I}$	$9.95V \le V_{IN} \le 26V, I_O = 5mA$	i —	50	100	mV
Load Regulation	ΔVo-lo	5mA≦I _O ≦I50mA	-	25	50	mV
Quiescent Current	Ioi	1 _O =10mA	-	4	7	mA
•	102	$I_O = 150 \text{mA}$	_	30	40	mA
Dropout Voltage	ΔV ₁ -0	$I_0 = 150 \text{mA}$	-	0.3	0.6	v
Output Noise Voltage	V _{NO}	10Hz~100kHz, I _O =150mA		150	—	μ٧
Ripple Rejection	RR	f=120Hz, I _O =150mA	-	56	—	dB

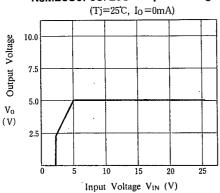
NJM2930L 85 ($V_{IN}=14V$, $C_2=10\mu$ F, $T_j=25^{\circ}$ C)

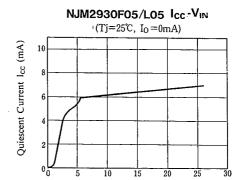
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vo	9.95V≦V _{IN} ≤26V, 5mA≤I _O ≤100mA	7.65	8.5	9.35	v
Line Regulation	ΔV ₀ -V ₁	9.95V≤V _{IN} ≤16V, I _O =5mA		12	50	mV
-	ΔV ₀ -V ₁	$9.4V \le V_{1N} \le 26V$, $I_0 = 5mA$	—	50	100	mV
Load Regulation	ΔV _O -I _O	5mA≤I _O ≤100mA	_	25	50	mV
Quiescent Current	lQt	$I_O = 10 \text{mA}$	_	4	7	mΑ
•	I_{Q2}	I _O =100mA	-	25	40	mΑ
Dropout Voltage	ΔV ₁ -0	I _O =100mA		0.25	0.6	ν
Output Noise Voltage	V _{NO}	10Hz~100kHz, 1 ₀ =40mA		150	—	μV
Ripple Rejection	RR	f=120Hz, I _O =40mA	—	56		dB

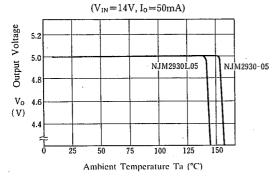

■ STANDARD APPLICATION EXAMPLES


- * This NJM2930 is required when the mounting position is separated from the power filter.
- ** Use an aluminum electrolytic capacitor or a fantalum capacitor as C_2 . The temperature guarantee range of capacitors should be down to -30° C. A capacity value of 10μ F is a minimum requirement for improving the stability and transient response. Mount it at a position as close to the leads as possible.
- *** When application on automobile car operation, the minus pulse might be input on IC. In this case, however, the pulse might trigger to latch up. If it were that, this kind of latching up might be continued, the IC would burn up into defective in many cases. It is advisable to apply D1,D2 as described in the drawing, in order to prevent from making any troubles. It is important to make devices D1, D2 against V_{IN} to be able to stand for brake down voltage, current volume, and then less volume for Vf.

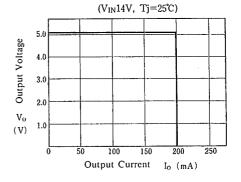
NJM2930L (TO-92)


■ POWER DISSIPATION VS. AMBIENT TEMPERATURE

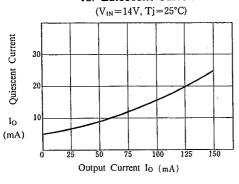



TYPICAL CHARACTERISTICS

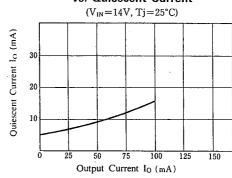
NJM2930F05/L05 Output Voltage



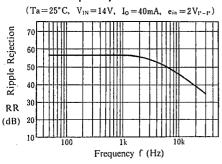
NJM2939F05/L05 Thermal Shutdown



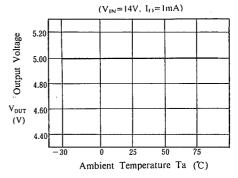
NJM2930F05/L05 Load Characteristics


Input Voltage V_{IN} (V)

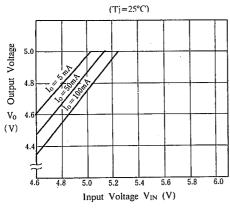
NJM2930L05 Output Current vs. Quiescent Current

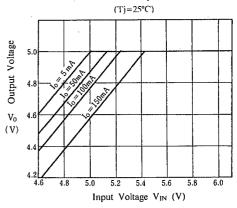


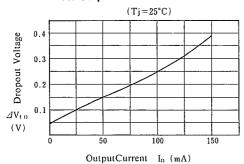
NJM2930F05 Output Current vs. Quiescent Current



■ TYPICAL CHARACTERISTICS


NJM2930F05/L05 Ripple Rejection vs. Frequency


NJM2930F05/L05 Output Voltage


NJM2930L05 Dropout Voltage

NJM2930F05 Dropout Voltage

NJM2930F05 Dropout Voltage vs. Output Current

NJM2930

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.