

OSR7XNE1E1E

Features

Applications

•

• Highest luminous flux

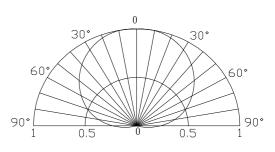
Super energy efficiency

Very long operating life Superior ESD protection

Green House Applications

• Red : Blue LED Iv Ratio is 8:1*

Outline Dimension


*The ratio is summarized by the photosynthesis test on

Phalaenopsis and provided from plant workshop in Taiwan.

Absolute Maximum Rating

		(14 25 0)			
Item	Symbol	Value	Unit		
DC Forward Current	$I_{\rm F}$	500	mA		
Pulse Forward Current#	\mathbf{I}_{FP}	700	mA		
Reverse Voltage	VR	5	V		
Power Dissipation	PD	2450	mW		
Operating Temperature	Topr	-30 ~ +85	°C		
Storage Temperature	Tstg	-40~ +100	°C		
Manual Soldering Temperature	Tsol	260°C/5sec	-		

Directivity

#Pulse width Max.10ms, Duty ratio max 1/10

Electrical -Optical Characteristics

(Ta=25°C)

(Ta=25°C)

•				,	/	
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
DC Forward Voltage*1	V_{F}	IF=350mA	2.0	2.3	3.0	V
DC Reverse Current	I _R	V _R =5V	-	-	10	μΑ
Peak Wavelength*2	$\lambda_{\rm P}$	IF=350mA	650	660	670	nm
Luminous Flux*3	Φv	IF=350mA	15	20	-	lm
Radiant Power*4	Ро	IF=350mA	120	150	-	mW
50% Power Angle	201/2	I _F =350mA	-	140	-	deg
*.TT 1 C		1 1	10 117			

*1 Tolerance of measurements of forward voltage is±0.1V

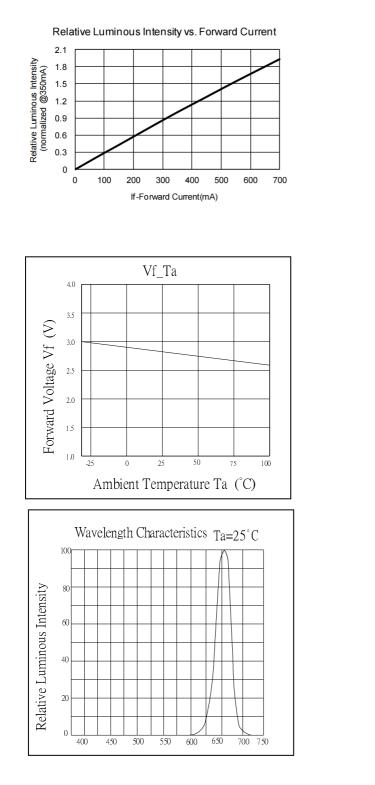
*2 Tolerance of measurements of peak wavelength is ± 1 nm

*3Tolerance of measurements of luminous flux is $\pm 15\%$

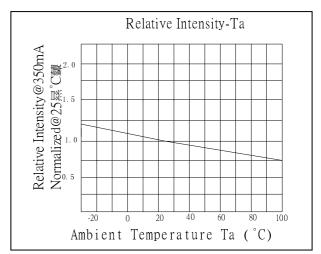
*4 Tolerance of measurements of radiant power is $\pm 15\%$

Note: Don't drive at rated current more than 5s without heat sink for Xeon 1 emitter series.

LED & Application Technologies



Xeon 1 Power Red Emitter


OSR7XNE1E1E

AlGaInP LED

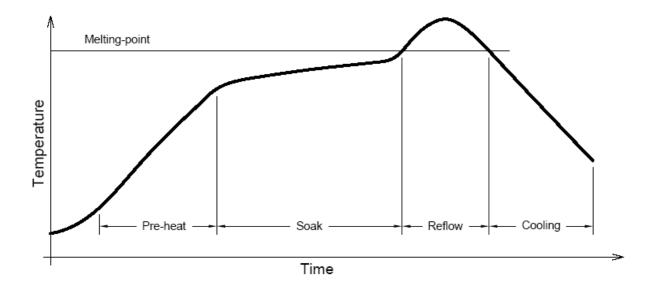
TYPICAL ELECTRICAL/OPTICAL CHARACTERISTIC CURVES

Forward Current vs. Forward Voltage

LED & Application Technologies

Xeon 1 Power Red Emitter

OSR7XNE1E1E


Soldering Heat Reliability :

Reflow soldering Profile

- \cdot Reflow soldering should not be done more than two times.
- \cdot When soldering, do not put stress on the LEDs during heating.
- \cdot After soldering, do not warp the circuit board.
- \cdot Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable,
- a double-head soldering iron should be used. It should be confirmed beforehand whether the

characteristics of the LEDs will or will not be damaged by repairing.

Solder
Average ramp-up rate = 3°C/sec. max.
Preheat temperature: 150°~180°C
Preheat time = 120 sec. max.
Ramp-down rate = 6° C/sec. max.
Peak temperature = 220° C max.
Time within 3°C of actual
peak temperature = 25 sec. max.
Duration above 200°C is 40 sec. max.

LED & Application Technologies

