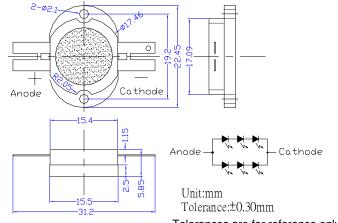


Tops 10 Power Pure White LED

OSW4XAHAE1E

VER.1

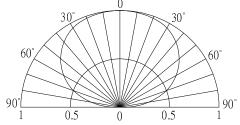

Features

- High-power LED
- Long lifetime operation
- Typical viewing angle: 140deg
- RoHS compliant
- Possible to attach to heat sink directly without using print circuit board.

Applications

- Indoor & outdoor lighting
- Stage lighting
- Reading lamps
- Display cases, furniture illumination, marker
- Architectural illumination
- Spotlights

■Outline Dimension


■Directivity

Tolerances are for reference only

■ Absolute Maximum Rating

Item	Symbol	Value	Unit
DC Forward Current *1	I_F	1,400	mA
Pulse Forward Current*2	I_{FP}	2,000	mA
Reverse Voltage	V_R	15	V
Power Dissipation*1	P_{D}	15,960	mW
Operating Temperature	Topr	-30 ~ +85	$^{\circ}\!\mathbb{C}$
Storage Temperature	Tstg	-40~ +100	$^{\circ}\!\mathbb{C}$
Lead Soldering Temperature	Tsol	260°C/5sec	-

(Ta=25℃)

■Electrical -Optical Characteristics (Ta=25°C)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
DC Forward Voltage	V_F	I _F =1000mA	8.7	10	11.4	V
DC Reverse Current	I_R	$V_R=15V$	-	-	20	μΑ
Luminous Flux	Φν	I _F =1000mA	750	850	-	lm
Color Temperature	CCT	I _F =1000mA	-	6500	-	K
Chromaticity	х	I _F =1000mA	-	0.31	-	
Coordinates*	у	I _F =1000mA	-	0.34	-	
50% Power Angle	2θ1/2	I _F =1000mA	-	140	-	deg

Note: Don't drive at rated current more than 5s without heat sink for High Power series.

^{*1,} Power dissipation and forward current are the value when the module temperature is set lower than the rating by using an adequate heat sink.

^{*2,} Pulse width Max.10ms Duty ratio max 1/10

^{*} Tolerance of chromaticity coordinates is $\pm 10\%$, * Tolerance of Luminous Flux is ±20%

Tops 10 Power Pure White LED

OSW4XAHAE1E

VER.1

■ Heat design

The following pictures show some measurements of mounted 5W Led on the heat sink for each board A and B (See Fig 1) with using thermograph to make an observation about heat distribution. Each boards is tested at various current conditions.

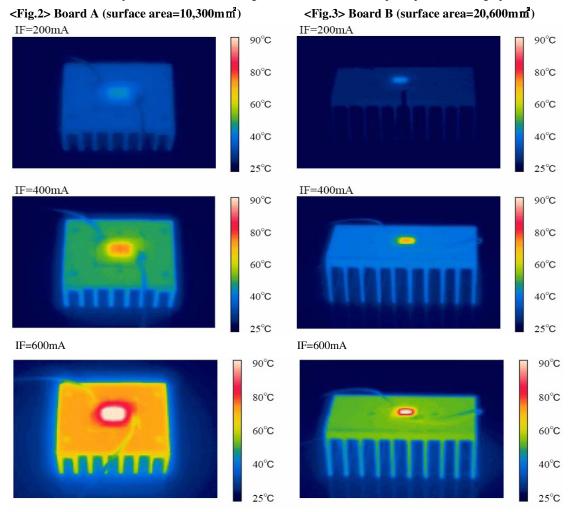

As a result, LED needs larger heat sink as much as possible to reduce its own case temperature.

Fig. 1 Configuration pattern examples for board assembly

Board	LED power	Material	Surface area (mm²) Min.
A	5W	Al	10,300
В	10W	Al	20,600
С	25W	Al	51,500
D	50W	Al	103,000
Е	100W	Al	206,000
F	200W	Al	412,000
G	300W	Al	618,000

Above tested LED device is attached with adhesive sheet to the heatsink.

For reference's sake, Tj absolute maximum rating is defined at 115°C as a prerequisite on design process of 5W LED.

LED & Application Technologies

http://www.optosupply.com VER A.0